

Trajectoires des systèmes agro-pastoraux en montagne

Adaptation des pratiques aux changements climatiques, écologiques et socio-économiques

GPS TRACKING: OPPORTUNITIES FOR A BETTER UNDERSTANDING OF

THE INTERACTIONS BETWEEN PASTORALISM AND

VEGETATION IN HIGH ALTITUDE PASTURES

Perron, Rémy; Garel, M.; Bayle, A.; Choler P.

LIFE PASTORALP final conference, March, 16th 2023

ZAA FUNDING - SUIVI DES TROUPEAUX DE MOUTONS PÂTURANT EN HAUTE-MONTAGNE

ZAA FUNDING - SUIVI DES TROUPEAUX DE MOUTONS PÂTURANT EN HAUTE-MONTAGNE

STrouMPH

STROUMPH - OBJECTIVES

What is the impact of pastoralism on the evolution of alpine pastures habitats?

- Understand the uses of the pasture habitats by the {shepherd + flock} system
- Understand the impact of the flock on the phytomass of habitats
- Compare uses and impacts with habitat phenologies
- Understand the practice adaptations to constraints (meteorological conditions, tourism, predation...)

STROUMPH – FIELD WORK

On 40 points, **before and after the use** by the flock

- Soil covering by functional classes of vegetation
- NDVI
- Presence of species indicating eutrophisation, erosion, trampling
- Grass height

GPS POSITION LOGGING

Catlog Gen2 GPS loggers

- ~ \$100 per collar
- About 400g each
- One relocation every 2 minutes
- No transmition

Pasture	Number of collars	Functionni g collars	Relocation rate	Erroneous relocations
Âne-et-Buyant	3	3	71,7 %	5,1 %
Cayolle	4	4	95,1 %	7,1 %
Combe-Madame	3	3	93,1 %	9,7 %
Grande-Fesse	6	4	98,9 %	5,1 %
Jas-des-Lièvres	3	3	66,4 %	6,3 %
Lanchâtra	8	6	87,4 %	9,6 %
Pelvas	8	5	88,3 %	6,7 %
Sanguinière	6	6	97,0 %	7,6 %
Viso	8	5	99,4 %	7,0 %

ANALYSES

COL DE LA CAYOLLE MOUNTAIN PASTURE

BEHAVIOURAL CATEGORISATION – HIDDEN MARKOV MODELS

FLOCK STOCKING RATE

ON THE PASTURE

- First link with the impacts
- Night and day resting areas are particularly noticeable

SPATIALISATION OF BEHAVIOURS ON THE PASTURE

Moving

Resting

Forraging (sheep.days/ha)

PASTURE HABITATS' USES

PASTURE HABITATS' USES

LINK TO PHENOLOGY

LINK TO PHENOLOGY – GREENUP WAVE

 $_{_{20}}^{_{40}}$ presence during the period

CONCLUSIONS

- Low-cost option for efficient bio-logging of pastoral activities
- Opportunities to link high resolution flock activity data and remote sensing
- Importance of discussion with the shepherds to understand both practice choices and constraints

FLOCK LOAD ON THE PASTURE HABITATS

