

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Département fédéral de l'économie, de la formation et de la recherche DEFR

Agroscope

Yield and nutritional quality of drought-resistant leys under extreme and contrasting climatic conditions

Massimiliano Probo, Rainer Frick, Edwige Dereuder, David Frund, Bastien Raymond, Pierre Mariotte

www.agroscope.ch I une bonne alimentation, un environnement sain

Interreg SPAD «Systèmes de Production Agricole Durables» (2020-2023)

- Project location: the departments of Doubs, Territoire de Belfort, Haute-Saône and Jura (France). Jura Canton and the Bernese Jura region (Switzerland)
- Background: Climate change is not only affecting mountain pasture yield, but also hay/silage production on valley floors/plains during the summer. Due to increasing droughts, <u>summer is becoming more and more a period of fodder stock utilization</u> <u>rather than production</u>
- Objective: to test summer leys having forage species that are potentially more resistant to dry climatic conditions than the ones generally used in Switzerland

Bard – 16th March 2023 Massimiliano Probo

2021 and 2022 : two contrasting summers

	Average monthly precipitation (mm)													
		1991-2	020		202 ⁻	1	2022							
	July	August	September	July	August	September	July	August	September					
Delémont	94	96	72	234	46	41	48	80	116					
Fahy	93	103	88	190	55	34	22	76	154					
Mean	94	100	80	212	51	37	35	78	135					
Mean Jul-Sep		273	3		300)	248							
	Average monthly precipitation (°C)													
		1991-2	020		202 ⁻	1	2022							
	July	August	September	July	August	September	July	August	September					
Delémont	18.7	18.2	14.1	17.7	17.1	15.6	20.5	19.7	13.8					
Fahy	18.2	18.0	13.9	17.2	16.3	15.8	20.5	20.5	13.8					
Mean	18.5	18.1	14.0	17.5	16.7	15.7	20.5	20.1	13.8					
Mean Jul-Sep		16.9	9		16.6	6	18.1							

Climate change is also increasing inter-annual climatic variation:

- **2021:** extremely wet in spring and until the beginning of August, after very dry. Months of July and August cold, September hot
 - 2022: extremely dry and hot in July and August, September wet

- 6 different leys
- Trial location: 3 farms at 500 m in the Swiss Jura Canton
- Previous crop: winter barley
- Slurry before sowing: 30 m³ ha⁻¹
- Sowing with cereal drill, row spacing 12.5 cm (sorghum 25 cm)
- Sowing period: 23-30/07/2021, 7-13/072022
- Harvest periods: 10-11/10/2021, 22/09/2022
- Forage conservation: round bale silage
- Analysis of: emergence speed, botanical composition, yields, nutritional value of the forage, silage quality

Number	Ley	Species	Species Seed density (kg ha ⁻¹)			36 m				36m											
1	Sudangrass	Sorghum sudanense (Piper)	15																		
	Hybrid sorghum-	Sorghum bicolor x Sorghum sudanense																			
2	Persian Clover-	(Pacific graze)-Trifolium resupinatum-	45 § 1																		
	Egyptian clover	Trifolium alexandrinum		19	1	,	3 4	5	6	4	1	6	5	3	2	1	6	4	, 3	5	
3	Foxtail millet	Setaria italica	25	- 8											-						
4	Pearl millet	Pennisetum glaucum	25																		
E	Black oat-Crimson		80																		
5	clover	Avena strigosa-Trifolium incarnatum																			
6	Oat-Pea-Common		175																		
0	vetch	Avena sativa-Pisum sativum-Vicia sativa	175		Répétition 1					Répétition 2					Répétition 3						

Multi-cut sorghum

- Withstands drought well, if enough water to emerge
- Multi-cut varieties: high regrowth capacity
- Use as after-cereal ley: avoid late sowing (before mi-July)
- Use: hay, silage or pasture (Sudangrass)
- High hydrocyanic acid content

Foxtail millet (Setaria italica)

- Drought-resistant species
- Mono-cut species
- Use: mowing; not so palatable for livestock
- Forage quality rapidly drops after heading (favor late varieties)

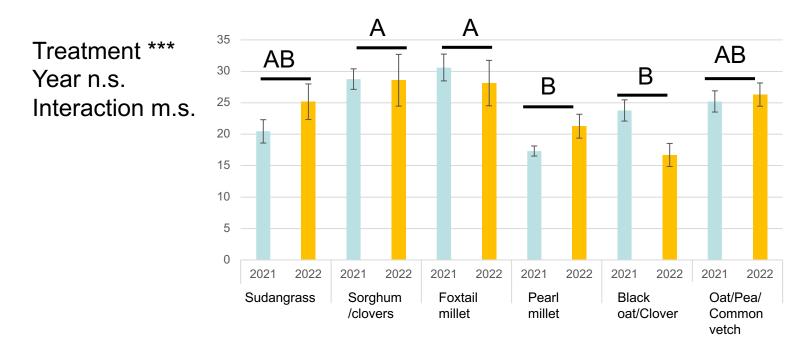
Pearl millet (Pennisetum glaucum)

- Undemanding culture, with deep root system (up to 1.6 m)
- Adapted to light and acid soils
- Strong tillering capacity, good regrowth
- Nitrate content can be high (in the first 15 cm)
- Use: mowing or grazing (minimum height 40-50 cm)

Bard – 16th March 2023 Massimiliano Probo

Black Oat (Avena strigosa)

- Undemanding crop, grows on all soils
- Less sensitive to leaf diseases than forage oat (rust)
- There are great varietal differences: avoid early varieties heading too quickly
- Contents comparable to forage oat, good protein/energy balance and digestibility
- It associates well with annual clovers


Egyptian, Persian and Crimson clovers (*Trifolium alexandrinum, Trifolium resupinatum, Trifolium incarnatum*)

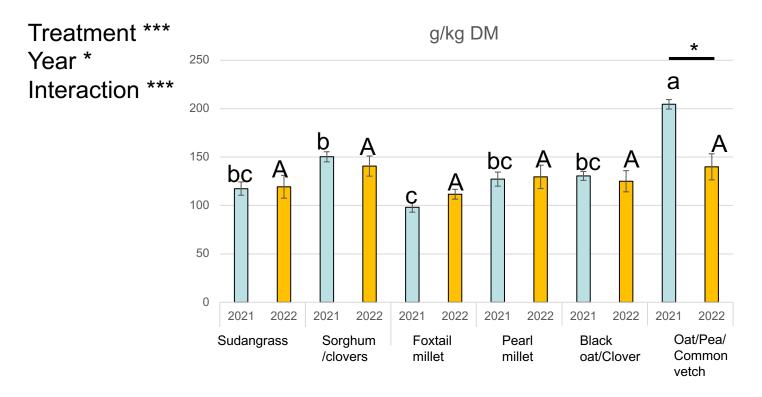
- Persian clover: high water content, provides higher fresh matter yields than Egyptian clover, but comparable dry matter yield
- Persian clover: higher energy and protein content than Egyptian clover
- Crimson clover: winter hardiness, slightly lower yields than Egyptian and Persian clover

Forage yield (dt DM ha⁻¹)

- Sorghum + clovers and Foxtail millet: best yields
- Sorghum + clovers: clovers accounted for 55% of DM in 2021, but only for 5% in 2022 (sorghum was too much competitive, it grewth rapidly with July and August temperatures)
- Sudangrass sorghum and Pearl millet: they suffered cold temperatures and wet climate in 2021
- OPC and Black oat + Crimson clover: rust on oat leaves in 2021
- **2022**: barley regrowth on 2 sites (Fontenais and Grandfontaine)

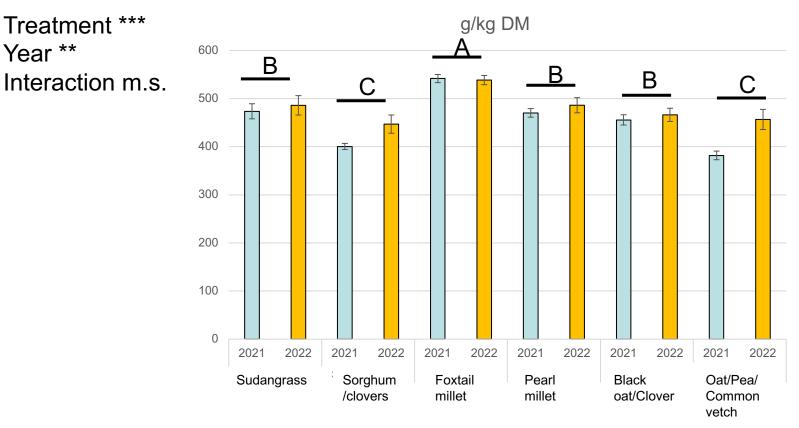
Sorghum + clovers, 15.09.2022

Pearl millet, 8.09.2021


Sorghum + clovers, 29.09.2021

Rust on forage oat, 8.09.2021

Bard – 16th March 2023 Massimiliano Probo

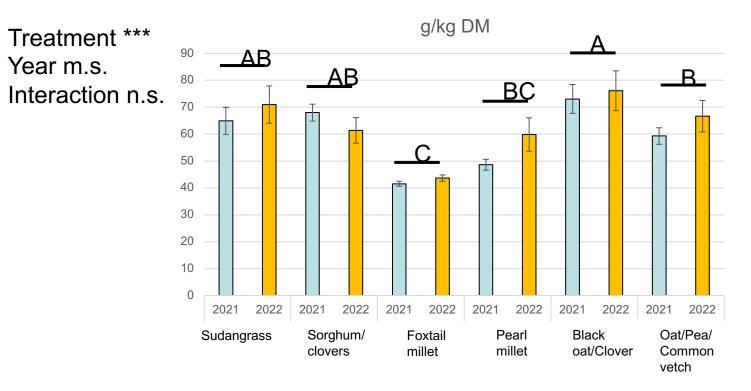

Protein content

- OPC: highest content in 2021 (mainly pea and common vetch in the mixture)
- **Sorghum + clovers**: good protein content in 2021 (higher clover proportion within the mixture) and not significant reduction in 2022
 - Foxtail millet: low protein content

•

Neutral detergent fibers (NDF) U

Foxtail millet : highest content


Year **

Sorghum + clovers and OPC: lowest content

٠

•

Water soluble carbohydrates (WSC)

- Higher content in 2022 than in 2021: imbalance between assimilation with photosynthesis and plant growth with drought
 - Generally low content
 - Foxtail millet: lowest content
 - Black oat + Crimson clover: highest content

•

Conclusions

- The 2021 and 2022 summers were climatically contrasting (opposite wet and dry periods) and characterized by often extreme values (far from the historical averages of the period, also for temperatures)
- Considering both forage yield and quality over 2 years, the treatment that provided the best results was the mixture sorghum + Egyptian and Persian clovers, thanks to the alternate growth of sorghum (favored by dry and hot conditions) or clovers (favored by cooler and wetter conditions)
- Foxtail millet showed a good capacity to produce biomass under contrasting climatic conditions, but its nutritional value was modest. It should be improved in the future by trying to combine it with legumes
- The Oat-Pea-Common Vetch mixture provided some interesting results (e.g. protein content), while all the other treatments provided unsatisfactory results

Thank you for your attention

Massimiliano Probo massimiliano.probo@agroscope.admin.ch

Agroscope une bonne alimentation, un environnement sain www.agroscope.admin.ch

