Global change impacts on ecosystem services of mountain grassland

Institute for Alpine Environment, Eurac Research, Italy Department of Ecology, University of Innsbruck, Austria

Uta Schirpke

Benefits from mountain grassland

Hazard regulation

> Climate regulation

Aesthetic appreciation

Habitat for biodiversity

Recreation

Forage for livestock (milk, meat) Cultural Water filtration

Socio-ecological system

Drivers of change

1860

2100

Current provision of ecosystem services

Intensification, Abandonment

Socio-economic changes (including policies, technological innovations)

Traditional use

Socio-economic changes Legacy effects of former land use Climate change

Future use

Spatial relationships of ecosystem services

Mountain regions supply abundant and diverse ecosystem services to people within and beyond mountain regions

Ecosystem service balance

supply > demand

demand > supply

not applicable

Spatial reference

- М mountain area
- surrounding lowland area L
- global G

Transportation process

SE

i

- 1) transport through human infrastructure 2) passive biophysical transport
- 3) active movement of people
- 4) transfer of ideas or information

Schirpke et al. 2019

Protection against

mountain hazards

M

G

Symbolic plants and animals

M

Case study 1: European Alps

Schirpke et al. (2022)

Land cover change between 2000 and 2018

Impacts on ecosystem services

Provisioning ES

- Pasture and fodder production (P1)
- Agricultural food production (P2)
- Timber production (P3)
- Gathering mushrooms and wild berries (P4)
- Provision of clean drinking water (P5)

Regulating ES

- Protection from hazards (R1)
- Prevention of water scarcity (R2)
- Provision of habitats (R3)
- Maintaining biodiversity (R4)
- Providing habitats for pollinating insects (R5)
- Pest control (R6)
- Disease control (R7)
- Maintenance or increase of soil fertility (R8)
- Positive effect on the climate (R9)

Cultural ES

- Opportunities for leisure activities (C1)
- Attractive housing and living space (C2)
- Experience of animals & plants (C3)
- Aesthetic inspiration (C4)
- Cultural heritage (C5)

Case study 2: South Tyrol (Italy)

Socio-economic scenarios

Business as usual (BAU)

Land use dynamics of the **past 50 years** into the future assuming that there will be **no major changes.**

Liberalisation

Due to increasing **globalisation pressure**, economically less valuable mountain areas are increasingly abandoned, while areas with **higher economic potential** are preserved for their economic valorisation.

Rewilding

The **population and economic activities are likely to decline** drastically, concentrating in favoured areas of the valleys due to a **decline in direct area-based payments**.

Food sovereignty

Change from **animal-based products** (milk, eggs, and meat) towards more **arable crops** due to a change towards a **healthier diet** improving the nutritional situation.⁹

Methodological approach

Land-use/cover changes

Schirpke et al. (2020)

Rock/glacier/water

100%

80%

Settlement

Abandoned land

Ecoregions

- E6 Agriculturally used alpine pastures, subalpine/alpine
- E5 Forest belt, montane-subalpine
- E4 Agriculturally used valley slopes, montane
- E3 Agriculturally used valley bottom, montane
- E2 Agricultural used valley slopes, colline
- E1 Agricultural used valley bottom, colline

1860 2100 Liberalisation 2100 Food Sovereignty

□ 2100 BAU 2100 Rewilding

%

2

1

Case study 3: Stubai valley (Austria)

- Part of a long-term socio-ecological research (LTSER) site
- Size 249 km², elevation 920 m 3450 m a.s.l.
- 54% forest, 16% grassland shaped by livestock farming,
 29% abandoned area

- Annual precipitation: 850 - 1087 mm (elevation dependend)
- Mean annual temperature: 6.8 - 1.1 °C (elevation dependend)

Past changes in grassland area

Managed grassland

- 1861 30% of the total area57% of the usable area
- 2010 8% of the total area15% of the usable area

Area-weighted mean for all grassland types for each time step

In the future?

Visions and transformation/adaptation pathways

Explorative scenarios with stakeholders

Key drivers for land-use changes

Key driver	Positive	Trend	Negative
Touristic services, i.e., managed grassland	++	+	-
Demand for local products	++	+	-
Demand for areas for settlement or energy production	+	+	++
Supplementary income (on-/off-farm)	+	+	++
Farm succession	++	+	-
Land-use structural change	+	+	-
Subsidies	+	+	-
Regulations	+	-	-
Cooperation among farmers/with municipality	++	+	-
Sustaining cultural landscape	+	+	-
Climate change	-	-	-
			19

Land-use scenarios

Modelling future ecosystem services

Climate change:

- +1.5K until 2050
- +3.3K until 2100

Variations in species relative abundances for 2100:

- fraction of grasses -10.7%,
- fraction of legumes +7.7%
- remaining functional groups +3%

Changes in plant traits for 2100:

- LNC -18.5%
- LDMC +3.8%

Extension of growing season Up-shift of treeline

Changes in vegetation composition

Changes in plant traitbased models

Trends in ecosystem services

managed grassland
 abandoned grassland

forest

FP= Forage production
FQ = Forage quality
SF = Soil fertility
WQ = Water quality
CS = Carbon storage
AV = Aesthetic value

Schirpke et al. (2017)

Conclusions

- There is a general trend of a shift from provisioning services to regulating services, with municipalities increasing in multifunctionality or decreasing in ecosystem services supply
- In the past, land-use changes were mainly driven by socio-economic conditions, whereas in the future, legacy effects and accelerating climate change will become the more important drivers of change, especially at high altitudes

Conclusions

- Decision makers and land managers will be faced with the higher
 vulnerability of ecosystem services and less management possibilities due to climate change
- Sharing visions among stakeholders may support the development of adaptive pathways in mountain socioecological systems

Literature

- Kohler et al. (2017). Participative spatial scenario analysis for Alpine ecosystems. Environmental Management, 60(4), 679-692.
- Leitinger et al. (2015). Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps. Ecohydroly, 8, 1600–1613.
- Schirpke et al. (2017). Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosystem Services, 26, 79-94.
- Schirpke et al. (2019). A transnational perspective of global and regional ecosystem service flows from and to mountain regions. Scientific Reports 9, 6678.
- Schirpke et al. (2020). Spatio-temporal changes in ecosystem service values: Effects of land-use changes from past to future (1860–2100). Journal of Environmental Management 272, 111068.
- Schirpke et al. (2022). Using the Ecosystem Services Concept to Assess Transformation of Agricultural Landscapes in the European Alps. Land 11, 49(1).

Thank you for your attention!

Uta.Schirpke@eurac.edu

