Analysis and conservation of secondary grasslands: the case of Maiella National Park

DIPARTIMENTO DI SCIENZE AGRARIE, ALIMENTARI E AMBIENTA <u>Daniela Gigante</u>*, Simone Angelucci°, Luciano Morbidini*, Mariano Pauselli*, Marco Vizzari*, Valter Di Cecco°, Federica Bonini*, Luca Madonna°, Bernardo Valenti*, Luciano Di Martino°

grassland habitats: the highest biodiversity in Europe

if we consider a small spatial grain,

grasslands* represent the species-richest habitat in the world: e.g. 89 species /m²

(at larger grains, of course the record is hold by tropical rain forests: e.g. 942 species /ha

*oligo- to mesotrophic, managed, semi-natural, temperate grasslands

Annex I grassland habitats: conservation status in italy

Distribution of level I pressure typologies in different habitat groups and species for the "Nature" Directives (overall results at EU level from Member States Reports, source: EEA, 2020)

		A - Agriculture	B - Forestry	C - Extraction of resouces	D - Energy production	E - Transport	F - Urbanisation	G - Exportation o species	H - Other human intrusions	I - Invasive alien species	J - Pollution	K - Modification of water regimes	L - Natural processes	M - Geological events	N - Climate change	X - Other
	Coastal habitats		5						1					*		11
	Dune habitats					-			12			-			-	
	Rocky habitats													¥.		
	Freshwater habitats		*		-	-		*							-	
Habitats	Bogs, mires and fens							+	. 0						- 11	*
	Grasslands	1.00	-	*			-				-	-				
	Heath and scrub			12						*						1
	Sclerophylious scrub														-	
	Forests								. *					۴.		*
Non-vascular	Non-vascular plants				1				9					10		_
	Vascular plants					*								1		4.1
	Molluscs				-			-								4
March 194	Other invertebrates														-	
species	Arthropods				. *	-						-				1
	Fish			*	-										*	1
	Amphibians			15	-			-						1		
	Reptiles								19		*					× .
2	Mammals									*	4.5			14		÷.
	Breeding								9					÷1		10
Birds	Passage				-								+			
	Wintering		*		-	*										+

% of pressures per habitat or species group

0 10 20 30 40 50 60

Note: The size of the squares and their shade reflect the percentage of pressures for each group: bigger darker squares indicate higher percentages.

Source: Article 12 and Article 17 Member States' reports and assessments.

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

Annex I grassland habitats: conservation status in italy

Annex I grassland habitats: EC focus on habitat 6210

EU HABITAT ACTION PLAN

Action plan to maintain and restore to favourable conservation status the habitat type 6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (*Festuco-Brometalia*) (*important orchid sites)

SERVICE CONTRACT FOR SUPPORTING THE DELIVERY OF THE ACTION PLAN FOR NATURE. PEOPLE AND THE ECONOMY IN RELATION TO ACTIONS 4. 5 AND 7 (ENV/D.3/SER/2017/0023)

European Commission, 2019

Surface area (km²) of 6210 in the Member States

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

study area

Maiella National Park

- ✓ established based on the law L394/91 and DPR 5/06/1995
- ✓ mostly NW-SE-oriented limestone ridges
- ✓ altitudinal range :130 2,793 m a.s.l.
- ✓ area: ca. 74.000 ha
- ✓ from (Sub-)Mesomediterranean to Criotemperate Bioclimatic belts
- Natura 2000 network is represented by 1 SPA and 4 SACs
- ✓ 2,286 plant species, including 15 exclusive endemics (Conti et al. 2019)
- ✓ 10 vegetation series, from thermophilous white oak forests to high altitude primary vegetation
- ✓ one of the most threatened areas in Europe, mainly due to climate change (Gomez-Campo 1985; Di Cecco et al. 2020)

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

study area

The territory of Maiella National Park (MNP) stands as an emblematic area in central Italy for both <u>grasslands extent</u> (ca. 22,000 ha as of 2014) and <u>land depopulation</u>, as well as for the drastic, long-lasting **trend of reduction in breeding activities and extensive livestock grazing**

sheep/goat and cattle load on MNP pastures in 2002, 2009 and 2018 (source MNP)

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT) Daniela Gigante, DSA3 UniPG / Maiella National Park

study targets

Study of the secondary grasslands and meadows (Annex I habitats 6170 (p.m.p.) - **6210** - **6230** - **6510**), with a focus on:

- \checkmark plant community diversity and distribution
- \checkmark pabular value of the pastures
- \checkmark habitats distribution
- ✓ conservation issues & management challenges

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

metodology

- remote sensing analysis based on vegetation indexes
 (NDVI) and map of the main land use changes over the last
 20 years, with identification of the main dynamic processes
- identification of homogeneous sampling sites, based on the ecological-environmental characteristics, representative of the territorial variability
- > vegetation survey in 4x4 m² plots, 3 replicates in each site
- characterization of the grasslands by way of:
 - \checkmark phytosociological interpretation
 - ✓ pastoral value (PV)
 - biomass collection, dry weight and main nutritional parameters analysis
 - ightarrow integration of the different approaches
- web-GIS tools
- support for grazing planning, based on the suitable grazing animal load and appropriate techniques

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

remote sensing

Article Pixel- vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park

results: remote sensing

Andrea Tassi ¹, Daniela Gigante ¹, Giuseppe Modica ², Luciano Di Martino ³ and Marco Vizzari ^{1,1}

Landsat 8 data composition and classification process using Google Earth Engine (GEE); both pixel-based (PB) and object-based (OB) approaches, producing a detailed, 15-m resolution Land Cover map of the study area

MDPI

- five spectral indices, some of them on an interannual basis, to account for vegetation seasonality
- ✤ "Random Forest" (RF) machine learning classifier
- randomly distributed 1200 ground truth points, 70% used to train the RF classifier and 30% for the validation phase
- ✤ 2 reference periods: 1999-2001 and 2018-2020

Land use and cover In the period I (1999-2001)

Land use and cover in the period II (2018-2020)

^{*} remote sensing

MDPI

results: remote sensing

Article

Pixel- vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park

Andrea Tassi ¹, Daniela Gigante ¹, Giuseppe Modica ², Luciano Di Martino ³ and Marco Vizzari ^{1,*}

2020 2000	wooded areas	little or no vegetation	grasslands and pastures	shrublands	heterogeneous agricultural areas	total
wooded areas	94.28%	1.36%	0.59%	3.54%	0.24%	100%
little or no vegetation	1.04%	89.74%	3.88%	5.11%	0.22%	100%
grasslands and pastures	2.93%	<mark>11.29%</mark>	<mark>60.03%</mark>	<mark>23.82%</mark>	1.93%	100%
shrublands	27.58%	5.34%	2.98%	61.70%	2.39%	100%
heterogeneous agricultural areas	3.24%	0.36%	0.41%	3.73%	92.26%	100%
total	50.21%	16.10%	8.31%	16.66%	8.72%	100%

Land use and cover in the period I (1999-2001)

Land use and cover in the period II (2018-2020) Transitions of the grasslands between the two considered periods (the current classes are indicated)

5 km

2.5

results: plant communities

- period 2019-2020 141 vegetation surveys x 532 species
- Cluster analysis (Euclidean distance, Ward.2)
- Indicator Species analysis: package 'indicspecies', v.1.7.12; Association function "r.g", Significance level (alpha) = 0.05 (De Cáceres & Legendre 2009; De Caceres et al. 2011)
- statistical analyses performed with RStudio, v. "Ghost Orchid" Release

> 19 plant communities

3 main groups:

- A hay meadows and pasture-meadows of the karstic highlands: H 6510
- B dry and semi-mesic secondary grasslands of middle-low altitude: H6210, H6220* (fragments)
- C mesic secondary grasslands of middlehigh altitude and subprimary grasslands: H6210, H6230* (+H6170 pro minima parte)

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

results: pastoral value (PV)

specific index (IS): synthetic index that takes into account various aspects of each species composing a grassland: productivity, nutritional value, palatability (or pabularity), taste, digestibility, and resistance to grazing -> expression of different geographical areas and ecological conditions of growth

- ✓ starting from the IS archive developed by Roggero et al. (2002), and adding the most recent contributions, a matrix was constructed with the IS values used in the central-Mediterranean areas; only those from central Apennine were selected and used
- ✓ in order to make estimates of the Pastoral Value as reliable as possible, for each species both the maximum and minimum IS found in the central Apennine literature were taken into consideration: the obtained PVs therefore covers a <u>range of values</u>
- ✓ PV was calculated both from the point/transect surveys and from the phytosociological surveys (as proposed by Bagella & Roggero 2004) -> a statistical comparison between the two sampling methods was carried out, showing a good correspondence of the 2 methods (r=0.78, p<0.001)</p>

PV from point/transect surveys

RMA Regression	: VPTmin-VPFmin, log-	log transformed		
Slope a:	1.1239	Std. error a:	0.16031	
	t:	7.0109	p (slope):	1.12E-06
Intercept b:	-0.15453	Std. error b:	0.21282	
95% bootstrapped	d confidence intervals (N	=1999):		
Slope a:	(0.66708, 1.4645)			
Intercept b:	(-0.62818, 0.46078)			
Correlation:				
r:	0.78323			
r2:	0.61345			
t:	5.4911			
p (uncorr.):	2.69E-05			
Permutation p:	0.0001			

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

results: pastoral value (PV)

* ranges of pastoral values (PV) for the detected plant communities

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

results: nutritional parameters

analyzed parameters:

- ✓ Net dry weight
- ✓ EE (total lipids ethereal extract)
- ✓ NDF (neutral-clean fiber)
- ✓ ADF (cellulose + lignin)
- ✓ ADL (non-digestible fraction)
- ✓ EMICELL (fastest digestible fraction)

Fes_Arr

- ✓ CELL (slowly digestible fraction)
- ✓ PG (rough protein)
- ✓ Soluble Sugars

	Sum of sqr	s df	Mean squ	are F		p (same)
Between group	ps: 93775.5	14	6698.25	7.686		2.225E-09
Within groups	59258.6	68	871.451			Permutation p (n=999
Total:	153034	82				1E-05
Components o	f variance (only	for ran	ndom effect	s):		
Var(group):	1072.68	Var(e	rror): 83	1.451	ICC:	0.551752
omega2;	0.53					
Levene's test	for homogeneit	y of var	riance, from	meanø (san	ne):	3.918E-10
Levene's test,	from medians			p (san	ne):	2.417E-08
Welch F test in	the case of une	equal v	ariances: F=	3.734, df=15	.51, p=0	.007393
Bayes factor:	5.6E07 (decisive	evidenc	ce for unequa	il means)		


```
omega2: 0.6573
```

Levene's test for homogeneity of variance, from meanp (same): 2.446E-07 Levene's test, from medians p (same): 3.46E-06 Welch F test in the case of unegual variances: F=13.71, df=15.68, p=2.912E-06

Bayes factor: 1.224E12 (decisive evidence for unequal means)

	Sum of sqrs	df	Mean squ	are F		p (same)
Between groups	: 337455	14	24103.9	10.02		1.16E-11
Within groups:	163612	68	2406.06			Permutation p (n=99999
Total:	501067	82				1E-05
Components of	variance (only	for ran	dom effect	s):		
Var(group): 3	3994.44	Var(e	rror): 2	106.06	ICC:	0.624082
omega2: 0	0.6033					
Levene's test fo	r homogeneity	of var	iance, from	meanø (sam	ne):	2.3E-13
Levene´s test, fr	om medians			p (sam	ne):	6.853E-12
Welch F test in t	he case of une	qual v	ariances: F	31.34, df=15.	51, p=9.	218E-09
Davias factor: 1.4	43E10 (decision	. ovide	ince for une	(anneal meane)		

otal:	12707	82			1E-05
omponents	of variance (o	nly for random ef	fects):		
ar(group):	101.634	Var(error):	60.7061	ICC:	0.626057
mega2:	0.6054				

- Levene's test for homogeneity of variance, from meanp (same): 3.926E-09 Levene's test, from medians p (same): 1.19E-06
- Velch F test in the case of unequal variances: F=14.76, df=15.87, p=1.558E-06

Bayes factor: 1.497E10 (decisive evidence for unequal me

	Sum of sqrs	df	Mean square	F		p (same)
letween groups	: 15880	14	1134.29	16.36		1.434E-16
Vithin groups:	4713.68	68	69.3188			Permutation p (n=9999
otal:	20593.7	82				1E-05
components of	variance (only f	lor ran	dom effects):			
/ar(group): 1	196.054	Var(e	ror): 69.318	88	ICC:	0.738787
mega2:	0.7216					
evene's test fo	r homogeneity	of var	iance, from mea	inø (sam	e):	0.002087
evene's test, fi	rom medians			p (sam	e):	0.02715
Velch F test in t	he case of une	qual va	ariances: F=25.1	1, df=15.6	i9, p=4.	334E-08
layes factor: 9.1	128E14 (decisive	evide	nce for unequal	means)		

Welch F test in the case of unequal variances: F=17.43. df=15.36. p=6.866E-07

Bayes factor: 1.856E13 (decisive evidence for unequal means)

irs	Cyn_cn		1			1		1						
	Fes_mic		•											
	Tar_Tri_gna	+												
	Alo_pra		-			•	•	•						
	Pol_Bra		•											
	Poo_Fes		+											
	Ant_Bra	• • • • •	-											
	Bri_Bro													
	Asp_Bro													
	Pot_Bra													
	Koe_Bro													
	Alo_ren													
	Ast_Ses_vCen													
	Ses_ape													
	Luz_Nar_car													
	Poo_Nar_fes													
	Ses_Bro_vSti													
			1				1							
	0	200	1	400	600	800	0 10	00						
	Peso secco (g/m2)													
	Between groups:	Sum of sqrs	df	Mean squar	e F		p (same)							
	Within groups:	980706	68	14422.2	11.00		Permutati	on p (n=91						
	Total:	3.32155E06	82				1E-05							
	Components of v	ariance (only f	for ran	dom effects):				1E-05						
	var(group): 2	8120.1	var(e	ror): 144.	22.2	ICC:	0.06104							
	omega2: 0	6412												
	Levene's test for	homogeneity	of var	iance, from m	ean p (sam	ne):	4.129E-11							
	Levene's test, fro	om medians			p (san	ne):	4.484E-10							
	Welch F test in th	e case of uneo	qual va	riances: F=20).65, df=15	.52, p=1.	857E-07							

Bayes factor: 3.3E11 (decisive evidence for unequal means)

results: nutritional parameters

* positive correlations of some nutritional parameters with the Pastoral Value: proteins and sugars

PASTORALP final conference, *Global Challenges in Mountain Agropastoral Systems*, 15-17 March 2023, Forte di Bard (IT)

results: web-GIS tool

* development of a web interface for <u>near-real-time analysis</u> of the vigor and phenological phases of vegetation

an interactive and operational tool that provides information on the <u>current growth trend of</u> <u>vegetation</u> (green line: the NDVI trend of the last 3 months) in comparison with the expected one, referred to today's date last year (red line), supporting the rational use of grazing areas

it can be used on any smartphone

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

results: in progress

- map of the distribution of the secondary grassland types (pastures, meadows, pasture-meadows) at the level of phytosociological alliance, scale 1:10,000
- spatialization of the appropriate animal load, for a correct grazing planning, and promotion of farmers activities, in order to halt the huge dynamic processes affecting at present large areas of the MNP

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

the understanding of secondary grasslands, and their maintenance in favorable conservation status, profit from an <u>integrated approach</u>, combining not only an analysis of their **biodiversity** but also the implementation of **traditional sustainable uses and practices**

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

the understanding of secondary grasslands, and their maintenance in favorable conservation status, profit from an <u>integrated approach</u>, combining not only an analysis of their **biodiversity** but also the implementation of **traditional sustainable uses and practices**

we propose an **integrated approach** for the assessment of the <u>appropriate animal load</u>, that takes into account, at the same time, **classical biodiversity traits** (e.g. vegetation and Annex I habitats) and **nutritional parameters** (direct: chemical content – and indirect: pastoral value), **different scales of sampling** (field survey <u>and</u> remote sensing), adding some **innovative technological support** to farmers (e.g. web-GIS tools)

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

the understanding of secondary grasslands, and their maintenance in favorable conservation status, profit from an <u>integrated approach</u>, combining not only an analysis of their **biodiversity** but also the implementation of **traditional sustainable uses and practices**

we propose an **integrated approach** for the assessment of the <u>appropriate animal load</u>, that takes into account, at the same time, **classical biodiversity traits** (e.g. vegetation and Annex I habitats) and **nutritional parameters** (direct: chemical content – and indirect: pastoral value), **different scales of sampling** (field survey <u>and</u> remote sensing), adding some **innovative technological support** to farmers (e.g. web-GIS tools)

this approach allows to <u>support the farmers/shepherds job</u>, and to identify areas worth AND susceptible to <u>recovery</u> (when present), also in the present frame of climatic changes

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT)

the understanding of secondary grasslands, and their maintenance in favorable conservation status, profit from an <u>integrated approach</u>, combining not only an analysis of their **biodiversity** but also the implementation of **traditional sustainable uses and practices**

we propose an **integrated approach** for the assessment of the <u>appropriate animal load</u>, that takes into account, at the same time, **classical biodiversity traits** (e.g. vegetation and Annex I habitats) and **nutritional parameters** (direct: chemical content – and indirect: pastoral value), **different scales of sampling** (field survey <u>and</u> remote sensing), adding some **innovative technological support** to farmers (e.g. web-GIS tools)

this approach allows to <u>support the farmers/shepherds job</u>, and to identify areas worth AND susceptible to <u>recovery</u> (when present), also in the present frame of climatic changes

any effort is doomed to failure if effective strategies are not adopted to bring **humans and animals** back to the territory: this implies a serious effort to emphasize <u>the farmers' role for active nature conservation</u> and a serious support to the empowerment of the local economy

PASTORALP final conference, Global Challenges in Mountain Agropastoral Systems, 15-17 March 2023, Forte di Bard (IT) Daniela Gigante

